Uniform Eddy Current Probe Implementation Using Planar Excitation Coil and Gmr Sensor Array

نویسندگان

  • Octavian Postolache
  • Artur Lopes Ribeiro
چکیده

Defect detection in conductive plates represents an important issue. This work presents designed and implemented uniform eddy current probe architecture (UECP) that includes a planar excitation coil and a GMR magnetometer sensor array as part of a non-destructive testing (NDT) system developed using a virtual instrument system technology. The usage of GMR sensors provides frequency independent sensitivity to the UECP, assuring speed, depth, and higher resolution in eddy-current testing, while the usage of a set of GMR sensors allows rapid scanning of an area for defects in a single pass. A practical approach concerning the UECP design, implementation and experimental results obtained on cracks detection machined in aluminum plates for a single or multiple GMR sensor usage as main parts of UECP are presented. Experimental results regarding the usage of the novel eddy current probe to detect induced flaws in aluminum plates are included in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial detection of ferromagnetic wires using GMR sensor and based on shape induced anisotropy

The purpose of this paper is to introduce a new technique for row spacing measurement in a wire array using giant magnetoresistive (GMR) sensor. The self-rectifying property of the GMR-based probes leads to accurately detection of the magnetic field fluctuations caused by surface-breaking cracks in conductive materials, shape-induced magnetic anisotropy, etc. The ability to manufacture probes h...

متن کامل

Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted Structures Inspection

In eddy current non-destructive testing of a multi-layered riveted structure, rotating current excitation, generated by orthogonal coils, is advantageous in providing sensitivity to defects of all orientations. However, when used with linear array sensors, the exciting magnetic flux density ( B x ) of the orthogonal coils is not uniform over the sensor region, resulting in an output signal magn...

متن کامل

Optimization and Validation of Rotating Current Excitation with Gmr Array Sensors for Riveted (postprint)

In eddy current non-destructive testing of a multi-layered riveted structure, rotating current excitation, generated by orthogonal coils, is advantageous in providing sensitivity to defects of all orientations. However, when used with linear array sensors, the exciting magnetic flux density (Bx) of the orthogonal coils is not uniform over the sensor region, resulting in an output signal magnitu...

متن کامل

An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT...

متن کامل

Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011